Dynamique des EDP dissipatives - Cours I

Geneviève Raugel

CNRS et Université Paris-Sud

Master Class, Strasbourg, Janvier 2018

Premiers exemples: EDO

Soit $X = \mathbb{R}^n$ (ou un espace de Banach) et l'EDO

$$\frac{dx}{dt} = f(t,x), \ x(0) = x_0 \in X, \tag{1}$$

où $f: U \to X$ est continue sur $U \subset \mathbb{R} \times X$ ((0, x_0) intérieur à U) et localement lipschitzienne en x (i.e., pour tout x_0 , il existe un voisinage $V \subset U$ de $(0, x_0)$ t. q., pour tout $(t, x_1) \in V$, $(t, x_2) \in V$, on a $\|f(t, x_1) - f(t, x_2)\|_X \le k\|x_1 - x_2\|_X$.

Le théorème de Cauchy-Lipschitz \rightsquigarrow il existe a > 0 t.q. l'équation (1) ait une (unique) solution $x(t) \in C^1([-a, a], X)$.

Formule de Duhamel : Soit l'EDO

$$\frac{dx}{dt} = Ax + g(t, x), \ t > 0, \ x(0) = x_0,$$

où $A \in \mathcal{L}(X)$ et g est une non-linéarité. La solution locale u(t) s'écrit

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)}g(s,x(s)) ds$$

Existence globale de solutions? Comportement qualitatif de x(t)?

ODE du second ordre

Les équations ci-dessous seront récrites comme des systèmes du 1er ordre en posant $y=x_t$:

$$x_t = y$$
, $y_t = g(x, y)$.

Equation de Duffing (1918) : vibrations (forcées) d'une machine industrielle

$$x_{tt} + \delta x_t - \beta x + x^3 = 0$$
, $(\gamma \cos \omega t)$

Cas autonome : $\gamma = 0$.

Cas conservatif : $\delta = 0$, équation hamiltonienne. Hamiltonien :

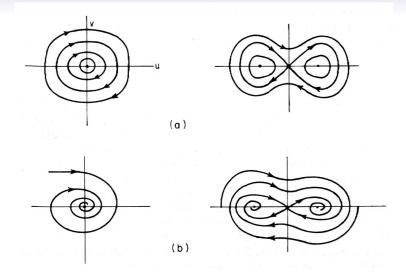
$$H(u, v) = \frac{v^2}{4} - \beta \frac{u^2}{2} + \frac{u^4}{4}$$

Cas dissipatif : $\delta > 0$.

Equation de Van der Pol (1927) : amortissement non-linéaire

$$x_{tt} + \delta \varphi(x) x_t + x = \gamma p(t)$$
,

où
$$\varphi(x)$$
 est paire, $\varphi(x) < 0$ si $|x| < 1$, $\varphi(x) > 0$ si $|x| > 1$.



(a) cas conservatif (
$$\delta=0,\ \beta<0,\ \beta>0$$
); (b) cas dissipatif ($\delta>0$); $v=u_t$

Deuxièmes exemples : EDP (I)

1) Equation de la chaleur semi-linéaire : Soit $\Omega \subset \mathbb{R}^n$ un ouvert régulier (frontière au moins lipschitz), $f: \mathbb{R} \to \mathbb{R}$ une application localement lipschitzienne. Soit l'EDP

$$\partial_t u(x,t) = \Delta u(x,t) + f(u(x,t)), \ x \in \Omega, \ t > 0,$$

$$u(x,t) = 0, \ x \in \partial \Omega, \ t > 0,$$

$$u(x,0) = u_0(x), \ x \in \Omega.$$
(2)

On va récrire (2) sous forme d'une équation d'évolution abstraite. **Espaces de Sobolev :** pour $1 \le p \le +\infty$, $m \in \mathbb{N}$, on définit l'espace de Sobolev

$$W^{m,p}(\Omega) = \{ v \in L^p(\Omega) \mid D^{\ell}v \in L^p(\Omega), \forall \ell \leq m \},$$

muni de la norme $\|v\|_{W^{m,p}(\Omega)} = \left(\sum_{\ell=0}^{\ell=m} \|D^{\ell}v\|_{L^p}\right)^{1/p}$ si $p < +\infty$ par exemple. Si p = 2, $W^{m,2}(\Omega) \equiv H^m(\Omega)$ est un espace de Hilbert. Dans la suite, on utilisera des injections de Sobolev, par exemple, $H^1(\Omega) \hookrightarrow L^p(\Omega)$, pour tout $2 \le p \le \frac{2n}{n-2}$. Cette injection est compacte si $2 \le p < \frac{2n}{n-2}$ si Ω borné.

Rappels: $X = L^2(\Omega)$, $B = -\Delta_D : \mathcal{D}(B) \to X$ est le Laplacien avec condition de Dirichlet. Δ_D est un opérateur auto-adjoint dans X, strictement négatif et $Y = X^{1/2} \equiv \mathcal{D}(B^{1/2}) = H^1_0(\Omega)$. En particulier, $A = \Delta_D$ est le générateur d'un semi-groupe analytique $S_0(t) \equiv e^{At}$ de contractions de X dans X.

Si $n \ge 2$, on fait l'hypothèse supplémentaire

Hypothèse (H1) : Il existe des constantes C_0 et a, $(n-2)a \le 2$ t.q.

$$|f(y_1)-f(y_2)| \leq C_0(1+|y_1|^a+|y_2|^a)|y_1-y_2|, \forall y_1,y_2 \in \mathbb{R}.$$

On définit l'application (encore notée)

$$f: v \in H_0^1(\Omega) \mapsto f(v) \in L^2(\Omega)$$
 définie par $(f(u))(x) = f(u(x))$ pour p. t. $x \in \Omega$.

Lemme

Sous l'hypothèse (H1), $f: H^1_0(\Omega) \to L^2(\Omega)$ est lipschitzienne sur les bornés de $H^1_0(\Omega)$. Si $n \ge 2$, on a :

$$||f(u)-f(v)||_{L^2} \le C_1(1+||u||_{H^1}^a+||v||_{H^1}^a)||u-v||_{H^1}, \forall u,v \in H_0^1(\Omega).$$

Exercice

On écrit l'équation (2) sous la forme d'une équation d'évolution dans $Y=X^{1/2}=H^1_0(\Omega)$

$$\frac{du}{dt}(t) = Au(t) + f(u(t)), t > 0, \ u(0) = u_0 \in H_0^1(\Omega) \ . \tag{3}$$

Théorème (Existence locale)

Hypothèse (H1). Pour tout r > 0, il existe T = T(r) t.q., pour tout u_0 , avec $||u_0||_{H^1} \le r$, l'equ. (3) possède une unique solution intégrale $u \in C^0([0,T],H^1_0(\Omega))$ i.e.

$$S(t)u_0 \equiv u(t) = S_0(t)u_0 + \int_0^t S_0(t-s)f(u(s))ds, t \in [0, T]$$

En outre, u est une solution classique, i.e., $u \in C^1((0, T], X)$ $\cap C^0((0, T], D(B))$ et l'équ. (3) est vérifiée pour tout $t \in (0, T]$.

Remarques : Le théorème est encore vrai si $(n-2)a \le 4$ (preuve à la Fujita-Kato)

- On a $S(t+s)u_0 = S(t)S(s)u_0$, pour tout t>0, s>0 (semi-groupe non-linéaire). Ne peut pas être un groupe.

Hypothèse (H2) : Il existe des constantes $C_1 \geq 0$ et $\mu \in \mathbb{R}$ t.q.

$$yf(y) \le C_1 + \mu y^2, \ F(y) \le C_1 + \frac{1}{2}\mu y^2, \forall y \in \mathbb{R}.$$

Théorème (Existence globale)

Sous les hypothèses (H1) et (H2), pour tout $u_0 \in H^1_0(\Omega)$, la solution u(t) de (3) existe globalement (sur $[0, +\infty)$).

Hypothèse (H3) : On suppose que, dans (H2), $\mu < \lambda_1$, où $\lambda_1 = \inf\{\|\nabla u\|_{L^2}^2 \mid u \in H_0^1(\Omega), \|u\|_{L^2} = 1\} \ge 0$ la 1ère v.p. de B

Théorème (Existence d'un borné absorbant)

Sous les hypothèses (H1), (H2) et (H3), il existe une constante K>0 et, pour tout r>0, $\tau(r)\geq 0$ t.q., si $\|u_0\|_{H^1}\leq r$, on a

$$||S(t)u_0||_{H^1} \leq K, \ \forall t \geq \tau(r).$$

$$E_0 = \frac{1}{2} \|u(t)\|_{L^2}^2$$
, $E_1(t) = \frac{1}{2} \|\nabla u\|_{L^2}^2 - \int_{\Omega} F(u(x,t)) dx$, $E_2 = E_0 + E_1 + C_1 |\Omega|$. Cas plus généraux d'équations paraboliques

2) Equation des ondes avec dissipation (faible) : Mêmes hypothèses sur l'ouvert $\Omega \subset \mathbb{R}^n$ et sur f. On suppose $\gamma > 0$.

$$\begin{split} \partial_{tt}^{2} u(x,t) + \gamma \partial_{t} u(x,t) &= \Delta u(x,t) + f(u(x,t)), \ x \in \Omega, \ t > 0, \\ u(x,t) &= 0, \ x \in \partial \Omega, \ t > 0, \\ (u(x,0), \partial_{t} u(x,0)) &= (u_{0}(x), v_{0}(x)) \ x \in \Omega, \end{split}$$

qu'on écrit sous la forme d'un système du 1er ordre

$$\begin{split} & \partial_t u(x,t) = v(x,t), \ x \in \Omega, \ t > 0, \\ & \partial_t v(x,t) = \Delta u(x,t) - \gamma \partial_t u(x,t) + f(u(x,t)), \ x \in \Omega, \ t > 0, \\ & u(x,t) = 0, \ x \in \partial \Omega, \ t > 0, \\ & \vec{u}(x,0) = (u_0(x), v_0(x)) \ x \in \Omega, \end{split}$$

où $\vec{u}(x,t) \equiv (u(x,t), \partial_t u(x,t)) \equiv (u(x,t), v(x,t)).$ Soit $X = H_0^1(\Omega) \times L^2(\Omega) = \mathcal{D}(B^{1/2}) \times L^2(\Omega)$ muni de la norme $\|\vec{u}\|_X^2 = \|\nabla u\|_{L^2}^2 + \|v\|_{L^2}^2$ et du produit scalaire correspondant. Soit C l'opérateur $(u, v) \in \mathcal{D}(C) \mapsto (v, \Delta_D u) \in X$ où $\mathcal{D}(C) = \mathcal{D}(B) \times \mathcal{D}(B^{1/2}) = (H^2 \cap H_0^1) \times H_0^1$. Soit $g(\vec{u}) = (0, -\gamma v + f(u)), \ \forall \vec{u} = (u, v) \in X$.

Lemme (Lemme 1)

- (i) L'opérateur C est antiadjoint dans X (i.e. $C^* = -C$) et donc, par le théorème de Stone, C est le générateur infinitésimal d'un groupe C_0 , noté e^{Ct} .
- (ii) Sous l'hypothèse (H1), $g: X \to X$ est lipschitzienne sur les bornés de X.

On peut donc récrire l'équation des ondes avec dissipation sous la forme d'une équ. d'évolution abstraite :

$$\frac{d\vec{u}}{dt}(t) = C\vec{u}(t) + g(\vec{u}(t)), \ t > 0, \vec{u}(0) = \vec{u}_0. \tag{4}$$

Théorème (Existence locale)

Hypothèse (H1). Pour tout r > 0, il existe T = T(r) t.q., pour tout \vec{u}_0 , avec $\|\vec{u}_0\|_X \le r$, l'equ. (4) possède une unique solution intégrale $\vec{u} \in C^0([-T,T],X)$ i.e.

$$S(t)\vec{u}_0 \equiv \vec{u}(t) = e^{Ct}\vec{u}_0 + \int_0^t e^{C(t-s)}g(\vec{u}(s))ds, t \in [-T, T]$$

Si $\vec{u}_0 \in \mathcal{D}(C)$, alors $\vec{u}(t) \in C^0([-T, T], \mathcal{D}(C)) \cap C^1([-T, T], X)$ est une solution classique.

Théorème (Existence globale)

Soit $\gamma \geq 0$. Sous les hypothèses (H1) et (H2), pour tout $\vec{u}_0 \in X$, la solution $\vec{u}(t)$ de (4) existe globalement pour les temps positifs..

Théorème (Existence d'un borné absorbant)

Soit $\gamma>0$. Sous les hypothèses (H1), (H2) et (H3), il existe une constante K>0 et, pour tout r>0, $\tau(r)\geq 0$ t.q., si $\|\vec{u}_0\|_X\leq r$, on a

$$||S(t)\vec{u}_0||_{H^1} \leq K, \ \forall t \geq \tau(r).$$

On utilise les fonctionnelles

$$\begin{split} E_0(t) &= \int_{\Omega} (\frac{\gamma}{2} u(x,t)^2 + u(x,t) v(x,t)) dx \\ E_1(t) &= \int_{\Omega} [\frac{1}{2} (v^2(x,t) + |\nabla u|^2 - F(u(x,t))] dx \\ E_2(t) &= \gamma E_0(t) + 2E_1(t) + 2C_1 |\Omega|. \end{split}$$

 E_0 , $E_1 \in C^1([-T, T])$. On verra plus tard que E_1 est la fonctionnelle de Lyapounov $\left(\frac{dE_1}{dt}(t) = -\gamma \|v(t)\|_{L^2}^2\right)$.

Systèmes abstraits : définitions

(X, d) où X: espace métrique complet, distance d.

Définition

Une famille à un paramètre $\{S(t)\}_{t\geq 0}$ d'applications de X dans X est un système dynamique continu sur X si

- 1) $S(0) = \operatorname{Id} (l'opérateur identité);$
- 2) S(t + s) = S(t)S(s) pour tout $t, s \ge 0$ (semi-groupe)
- 3) Pour tout $t \ge 0$, $S(t) \in C^0(X, X)$;
- 4) Pour tout $u \in X$, $t \mapsto S(t)u \in C^0((0,+\infty),X)$

Si $S \in C^0(X,X)$, la famille $\{S^n \mid n \in \mathbf{N}\}$ est un système dynamique discret.

Définition

Un ensemble A est positivement invariant si $S(t)A \subset A$, pour tout $t \in G^+$: A est invariant si S(t)A = A, pour tout $t \in G^+$.

Si
$$E \subset X$$
, $\gamma^+(E) = \{S(t)x \mid x \in E, t \in G^+\}$: l'orbite positive de E (si $\tau \in G^+$, $\gamma^+_{\tau}(E)$; cas $E = \{x\}$)

 $\gamma^+(E) \subset E$ ssi E est positivement invariant

Définitions (suite)

Plus généralement, soit I un intervalle de G. Alors, $u \in C^0(I, X)$ est une trajectoire de S(t) sur I si u(t+s) = S(t)u(s) pour tout $s \in I$ et tout $t \in G^+$ tel que $t + s \in I$. Si $I = -G^+$ et $u(0) = z \in X$, u est une trajectoire négative de z. Si I = G et $u(0) = z \in X$, u est une trajectoire complète de z. Il n'existe pas forcément de trajectoire négative passant par z. Et, si elle existe, elle n'est pas toujours unique.

- Exemples:
- 1. Pour l'équation de la chaleur, si $u_0 \in L^2(\Omega) \setminus H_0^1(\Omega)$, il n'y a pas de trajectoire négative. Mais, si une trajectoire rétrograde existe, elle est unique (unicité rétrograde).
- 2. Application logistique : Soit $2 < \lambda \le 4$ et soit

$$S: x \in [0,1] \mapsto Sx = \lambda x(1-x) \in [0,1].$$

Le point $x_0 = (\lambda - 1)\lambda^{-1}$ est un point fixe de S et le point $y_0 \equiv \lambda^{-1}$ est tel que $Sy_0 = x_0$. Soit $S^{-n}y_0$ l'unique point de [0,1]tel que $S^n(S^{-n}y_0) = y_0$ pour $n \in \mathbb{N}$. Les orbites $S^{\pm n}Sy_0$, $n = 0, 1, \cdots$ et x_0 sont deux orbites complètes passant par x_0 .

Exercice : Soit S(t) un système dynamique sur X et $A \subset X$.

Montrer que A est invariant ssi, $\forall a \in A$, il existe une trajectoire complète u_a passant par a. Si S(t) est un s.d. continu, alors $u_a \in C^0(G,A)$.

Un ensemble invariant peut ne pas contenir toutes les orbites complètes

Notations : 1) Soit $z \in X$. On introduit l'ensemble

$$H(t,z)=\{y\in X\,|\, \text{il existe une trajectoire négative }u_z\text{ de }z$$
 telle que $u_z(0)=z\text{ et }u_z(-t)=y\}$

Alors, $\Gamma^-(z) = \bigcup_{t \in G^+} H(t,z)$, $\Gamma(z) = \gamma^+(z) \cup \Gamma^-(z)$ sont la trajectoire négative de z et la trajectoire complète de z (définitions analogues si $E \subset X$)

2) Semi-distance non symétrique Soit $A, B \neq \emptyset$, $A, B \subset X$, on pose

$$\delta_X(x, A) = \inf_{a \in A} d(x, a) ,$$

$$\delta_X(A, B) = \sup_{a \in A} \inf_{b \in B} d(a, b) = \sup_{a \in A} \delta_X(a, B)$$

 $\operatorname{dist}_{X}(A,B) = \max(\delta_{X}(A,B), \delta_{X}(B,A)), distance de Hausdorff.$

Ensembles ω -limites et α -limites

Définition (ω et α -limites)

Soit E un sous-ensemble non vide de X.

(i) On appelle ensemble ω -limite de E dans X l'ensemble

$$\omega(E) = \bigcap_{s \in G^+} \overline{\gamma^+(S(s)E)}^X = \bigcap_{s \in G^+} \overline{(\bigcup_{t > s, t \in G^+} S(t)E)}^X.$$

(ii) De même, on définit l'ensemble α -limite de E dans X par

$$\alpha(E) = \bigcap_{s \in G^+} \overline{\left(\bigcup_{t > s, t \in G^+} H(t, E)\right)}^X.$$

- 1) Si S(t) est un flot, $\alpha(E)$ est l'ensemble ω -limite pour S(-t).
- 2) Si z a une trajectoire négative $u_z \in C^0(-G^+, X)$ avec $u_z(0) = z$. L'ensemble α_{u_z} -limite $\alpha_{u_z}(z)$ de la trajectoire u_z est

$$\alpha_{u_z}(z) = \bigcap \overline{\{u_z(-t) \mid t \geq s, t \in G^+\}}^X$$
.

ω -limites et α -limites (suite)

Lemme (Lemme de caractérisation)

Soit $E \neq \emptyset \subset X$. On a

$$\omega(E) = \{ y \in X \mid \text{il existe des suites } t_n \in G^+ \text{ et } z_n \in E \text{ telles que}$$

$$t_n \underset{n \to +\infty}{\to} +\infty \text{ et } S(t_n) z_n \underset{n \to +\infty}{\to} y \} \text{ .}$$

$$\alpha(E) = \{ y \in X \mid \text{il existe des suites } t_n \in G^+, \, x_n \in X \text{ et } z_n \in E \text{ t. q.}$$

$$t_n \underset{n \to +\infty}{\to} +\infty \; , \; x_n \underset{n \to +\infty}{\to} y \; o\grave{u} \; x_n = u_{z_n}(-t_n)$$
 et u_{z_n} est une trajectoire négative de z_n .

Preuve laissée en exercice.

De même, si $z \in X$ a une trajectoire négative $u_z \in C^0((-\infty,0],X)$ avec $u_z(0)=z$, alors

$$\alpha_{u_z}(z) = \{ y \in X \mid \text{il existe une suite } t_n \in G^+ \text{ telle que } t_n \underset{n \to +\infty}{\to} +\infty$$
 et $u_z(-t_n) \underset{n \to +\infty}{\to} y \}$.

ω-limites et α-limites (suite)

Propriétés élémentaires : Si $E \neq \emptyset$, $E \subset X$, on a les inclusions

$$\omega(E) = \omega(S(t)E) , \quad \alpha(E) \subset \alpha(S(t)E) , \quad \forall t \in G^+ ,$$

$$S(t)\omega(E) \subset \omega(E) , \quad S(t)\alpha(E) \subset \alpha(E) , \quad \forall t \in G^+ .$$

L'égalité $\omega(S(t)E) = \omega(E)$ découle de la définition

ω -limites et α -limites : exemples

Soit $E \neq \emptyset$, $E \subset X$. En général,

$$\omega(E) \neq \bigcup_{z \in E} \omega(z)$$
.

Exemple 1 : Soit S(t) le flot de l' ODE suivante sur $X = \mathbb{R}$,

$$\dot{y} = y(1-y)(2+y) .$$

Pour tout $y_0 \in \mathbb{R}$, $\lim_{t \to +\infty} S(t)y_0$ existe et $\lim_{t \to +\infty} S(t)y_0 = 1$ si $y_0 > 0$, S(t)0 = 0 et $\lim_{t \to +\infty} S(t)y_0 = -2$ si $y_0 < 0$, d'où

$$\omega(y_0) = 1$$
, si $y_0 > 0$,
 0 , si $y_0 = 0$,
 -2 , si $y_0 < 0$.

Soit E l'intervalle [-2,1]. Pour tout $t \ge 0$, l'image S(t)E est l'intervalle fermé S(t)E = [-2,1] et donc $\omega(E) = [-2,1]$.

Exemple 2

L'ensemble ω -limite peut être vide (exemple de Cooperman) .

Soit H_0 l'espace de Banach des suites réelles $x = \{x_i, i \ge 1 \mid x_i \to 0 \text{ si } i \to +\infty\}$, muni de la norme $\|x\|_{H_0} = \sup_{i \ge 1} |x_i|$.

Soit l'application $T: x = (x_1, x_2, ...) \in H_0 \mapsto (1, x_1, x_2, ...) \in H_0$ Soit l'application $U: H_0 \to H_0$ donnée par $U(x) = x/\|x\|_{H_0}$ si $\|x\|_{H_0} > 1$ et U(x) = x si $\|x\|_{H_0} \le 1$.

On pose $S = T \circ U$.

Puisque $S^n = T^n \circ U$, pour tout $x \in H_0$, les n premiers termes dans la suite $S^n(x)$ sont égaux à 1.

Pour tout $x_0 \in H_0$, $\omega(x_0)$ est vide.

En effet, par le lemme de caracterisation, si $\omega(x_0) \neq \emptyset$, il existe $y \in H_0$ et une suite $n_j \in \mathbf{N}$, $n_j \to +\infty$, tels que $S^{n_j}x_0 \to y$. Puisque $y \in H_0$, il existe $i_0 \in \mathbf{N}$ tel que, pour $i \geq i_0$, $|y_i| \leq 1/2$. Mais, pour $n_j \geq i_0$, $||S^{n_j}(x_0) - y||_{H_0} \geq 1/2$, ce qui contredit la convergence de $S^{n_j}x_0$ vers y.

 ω -limite dans \mathbb{R}^2 : théorème de Poincaré-Bendixson Soit

$$\frac{dy}{dt} = f(y) , \quad t \ge 0 ,$$

un système différentiel dans \mathbb{R}^2 , où $y \in \mathbb{R}^2$ et où $f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$. On suppose que l'EDO définit un flot $S(t): F \to F$ sur un sous-ensemble fermé F de \mathbb{R}^2 . Soit $y_0 \in F$. Si $\omega(y_0)$ est un ensemble non-vide compact, qui ne contient pas de point d'équilibre, alors $\omega(y_0)$ est une orbite périodique non-triviale.

Exercice: Soit l'EDO

$$\frac{dx_1}{dt} = x_2, \ \frac{dx_2}{dt} = -x_1 + x_2(1 - x_1^2 - 2x_2^2),$$

Soit $\mathcal C$ l'anneau $\{(x_1,x_2) \mid \frac{1}{2} < x_1^2 + x_2^2 < 1\}$. Montrer en utilisant le théorème de Poincaré-Bendixson que $\mathcal C$ contient une orbite périodique. On considèrera la fonction $V(x_1,x_2) = \frac{1}{2}(x_1^2 + x_2^2)$ et on utilisera le fait que $\frac{dV}{dt}(x_1,x_2)(t) = x_2^2(1-x_1^2-x_2^2)$ le long des solutions.

Attraction

Soit $B \neq \emptyset \subset X$, $\forall \varepsilon \geq 0$, $V_{\varepsilon}(B) \equiv \{z \in X \mid \delta(z,B) < \varepsilon\}$ et $\overline{V_{\varepsilon}}(B) \equiv \{z \in X \mid \delta(z,B) \leq \varepsilon\}$) sont les ε -voisinages ouvert et fermé de B dans X.

Définition

Soit S(t) un système dynamique sur X.

1) Soient $A \neq \emptyset \subset X$, $E \neq \emptyset \subset X$. On dit que A attire E si

$$\delta_X(S(t)E,A) \underset{t\to+\infty,\ t\in G^+}{\longrightarrow} 0$$
,

i.e., si pour tout $\varepsilon > 0$, il existe un temps $\tau = \tau(\varepsilon, A, E) \in G^+$ tel que

$$S(t)E \subset \overline{V_{\varepsilon}}(A)$$
, $t \geq \tau$, $t \in G^+$.

2) Soit $A \neq \emptyset \subset X$. On dit que l'ensemble A est attractif si, pour tout borné $B \neq \emptyset \subset X$, on a

$$\delta_X(S(t)B,A) \underset{t\to+\infty,\ t\in G^+}{\longrightarrow} 0$$
.

Compacité asymptotique

Définition

Soit S(t) un système dynamique sur X.

- 1) Le système S(t) est dit finalement borné si, pour tout borné $B \neq \emptyset \subset X$, il existe $\tau(B) \in G^+$ tel que la trajectoire $\gamma_{\tau(B)}^+(B)$ est bornée dans X.
- 2) Le système S(t) est dit asymptotiquement compact ou asymptotiquement régulier si, pour tout borné $B \neq \emptyset \subset X$ tel que $\gamma_{\tau}^+(B)$ est borné pour un certain $\tau = \tau(B) \in G^+$, tout ensemble de la forme $S(t_n)z_n$, où $z_n \in B$ et où $t_n \to +\infty$, $t_n \geq \tau$, $t_n \in G^+$ est relativement compact
- 3) Le système S(t) est dit compact pour $t > t_0 \ge 0$, si pour tout $t > t_0$, $t \in G^+$, pour tout borné $B \ne \emptyset \subset X$, S(t)B est relativement compact.

Exercice : Vérifier que si S(t) est compact pour $t > t_0 \ge 0$, alors S(t) est asymptotiquement compact.

Invariance et connexité des ensembles ω -limites

Lemme (Invariance et connexité)

Soit $E \neq \emptyset \subset X$,

- 1) Si l'ensemble ω -limite $\omega(E)$ est non vide, compact et attire E, alors $\omega(E)$ est invariant. Si, en outre, S(t) est un système continu et que E est connexe, $\omega(E)$ est connexe.
- 2) Si l'ensemble α -limite $\alpha(E)$ est non vide, compact et $\delta_X(H(t,E),\alpha(E)) \to_{t \to +\infty} 0$, pour $t \in G^+$, alors $\alpha(E)$ est invariant. Si, en outre, S(t) est un système continu et que H(t,E) est connexe pour tout $t \geq 0$, $\alpha(E)$ est connexe.

La propriété de connexité de $\omega(E)$ n'est pas forcément vraie si S(t) est remplacé par un système discret (notion de "invariantly connected").

Démonstration pour l'ensemble ω -limite, dans le cas où S(t) est un système continu.

Démonstration

1) Puisque $S(t)\omega(E)\subset\omega(E)$, il reste à montrer que $\omega(E)\subset S(t)\omega(E)$.

Si $z_0 \in \omega(E)$, il existe des suites $z_n \in E$ et $t_n \to +\infty$ t.q. $z_0 = \lim_{n \to +\infty} S(t_n) z_n$.

Puisque $\omega(E)$ attire E et que $t_n-t\to +\infty$, pour tout $j\in \mathbf{N}^*$, il existe $n_j\geq j$ tel que $\delta_X(S(t_{n_j}-t)E,\omega(E))\leq 1/j$; en particulier, il existe une suite $v_j\in \omega(E)$ telle que $d(S(t_{n_j}-t)z_{n_j},v_j)\leq 1/j$. Comme $\omega(E)$ est compact, il existe une sous-suite v_j de v_j qui converge vers un élément $v_0\in \omega(E)$ et ainsi $\lim_{j_k\to +\infty} S(t_{n_{j_k}}-t)z_{n_{j_k}}=v_0$. De la continuité de l'application S(t) de X dans X, on déduit que

$$z_0 = \lim_{j_k \to +\infty} S(t)S(t_{n_{j_k}} - t)z_{n_{j_k}} = S(t)\lim_{j_k \to +\infty} S(t_{n_{j_k}} - t)z_{n_{j_k}} = S(t)v_0,$$

et donc $\omega(E) \subset S(t)\omega(E)$.

2) Si E est connexe, alors $\omega(E)$ est connexe.

Démontrons d'abord que, pour
$$t \ge 0$$
,

fait que K_1 et K_2 sont non vides.

 $\gamma_t^+(E) = \bigcup \{S(s)z \mid z \in E, s \ge t\}$ est connexe. Si $z_0 \in E$, $\gamma_t^+(z_0) = \bigcup \{S(s)z_0 \mid s \ge t\}$ est connexe car

 $S(\cdot)z_0 \in C^0([0,+\infty),X)$. On remarque que, pour $s \geq t$, l'ensemble $\gamma_t^+(z_0) \cup S(s)E$ est connexe, car il est réunion de deux connexes dont l'intersection contient $S(s)z_0$. Puisque $\gamma_t^+(E) = \bigcup \{\gamma_t^+(z_0) \cup S(s)E \mid s \geq t\}$ est une union de connexes

dont l'intersection contient
$$\gamma_t^+(z_0)$$
, $\gamma_t^+(E)$ est connexe.
Supposons que $\omega(E)$ n'est pas connexe; alors, il existe deux ensembles compacts K_1 , K_2 non vides tels que $\omega(E) = K_1 \cup K_2$ et

que $K_1 \cap K_2 = \emptyset$. Il existe aussi $\varepsilon > 0$ assez petit tel que l'intersection des ε -voisinages fermés $\overline{V_\varepsilon}(K_1) \cap \overline{V_\varepsilon}(K_2)$ soit vide. On rappelle que $\overline{V_\varepsilon}(\omega(E)) = \overline{V_\varepsilon}(K_1) \cup \overline{V_\varepsilon}(K_2)$. Puisque $\omega(E)$

attire E, il existe $t_0 \equiv t_0(\varepsilon, E) \geq 0$ tel que $\gamma_t^+(E) \subset \overline{V_\varepsilon}(\omega(E))$, pour tout $t \geq t_0$. De la connexité de $\gamma_{t_0}^+(E)$, il suit que, ou bien $\gamma_{t_0}^+(E) \subset \overline{V_\varepsilon}(K_1)$, ou bien $\gamma_{t_0}^+(E) \subset \overline{V_\varepsilon}(K_2)$. Donc, ou bien $\omega(E) \subset K_1$, ou bien $\omega(E) \subset K_2$, ce qui est une contradiction au

Existence et compacité des ensembles ω -limites

Théorème (Existence et compacité de l'ensemble ω -limite)

Soit S(t), $t \in G^+$, un système dynamique sur X. On suppose que S(t) est finalement borné et asymptotiquement compact. Pour tout ensemble B borné, non vide de X,

- 1) l'ensemble $\omega(B)$ a les propriétés suivantes :
- a) $\omega(B) \neq \emptyset$, $\omega(B)$ est compact;
- b) $\omega(B)$ attire B;
- c) $\omega(B)$ est invariant;
- 2) Si $\Gamma^-(B)$ est un ensemble borné, non vide, alors,
- $a)\alpha(B) \neq \emptyset$, $\alpha(B)$ est compact;
- b) $\delta_X(H(t,B),\alpha(B)) \rightarrow_{t\rightarrow +\infty} 0$, $t \in G^+$;
- c) $\alpha(B)$ est invariant.

Démonstration dans le cas continu et le cas des ω -limites. La propriété d'invariance découle du lemme précédent.

- $\omega(B) \neq \emptyset$. Soit $z_0 \in B$. Puisque $\gamma_{\tau}^+(z_0)$ est bornée pour un $\tau \geq 0$ et que S(t) est a.c., toute suite $S(t_n)z_0$, t.q. $t_n \to +\infty$, est relativement compacte. Donc $\omega(B) \neq \emptyset$.
- $\omega(B)$ est compact. Soit v_n une suite d'éléments de $\omega(B)$; par le lemme de caractérisation, pour tout $n \in \mathbb{N}$, il existe un $z_n \in B$ et un réel $t_n \geq n$ t.q.

$$d(S(t_n)z_n,v_n) \leq 1/n$$
.

Comme S(t) est a.c. et que $\gamma_{\tau(B)}^+(B)$ est borné, il existe une sous-suite n_j telle que $\lim_{n_j \to +\infty} S(t_{n_j}) z_{n_j} = v$, où $v \in X$. Et, $v \in \omega(B)$. Par l'inégalité ci-dessus, $\lim_{n_j \to +\infty} v_{n_j} = v$. - $\omega(B)$ attire B. Si $\omega(B)$ n'attire pas B, il existe $\varepsilon > 0$, des suites $z_n \in B$ et $t_n \to +\infty$ t.q.

$$\delta_X(S(t_n)z_n,\omega(B)) \geq \varepsilon$$
.

S(t) étant a. c., il existe une sous-suite n_j t.q. $t_{n_j} \to +\infty$ et que $\lim_{n_j \to +\infty} S(t_{n_j}) z_{n_j} = v_0$. Donc $v_0 \in \omega(B)$, ce qui contredit l'inégalité ci-dessus.

Attracteur global

Définition

Soit S(t), $t \in G^+$, un système dynamique sur X. Un sous-ensemble

 $\mathcal{A} \neq \emptyset$ de X est appelé attracteur global du système S(t) si

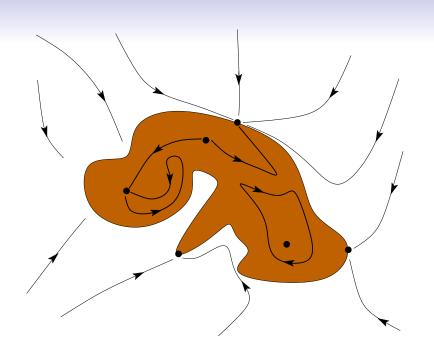
- 1) A est un fermé, borné de X,
- 2) A est invariant (i.e. S(t)A = A, pour tout $t \in G^+$),
- 3) A est attractif (i.e. A attire tout borné B de X).

On peut également définir des attracteurs locaux. Un sous-ensemble $J \neq \emptyset \subset X$ est un attracteur local si J est fermé, borné, invariant et attire un voisinage de lui-même.

Lemme (Lemme 1)

Si S(t) admet un attracteur global \mathcal{A} , on a les propriétés :

- a) Si B est un sous-ensemble borné de X, invariant, alors $B \subset A$ (propriété de maximalité).
- b) Si B est un sous-ensemble fermé de X, attractif, alors $A \subset B$ (propriété de minimalité).
- c) A est unique.



a) Si B est un borné, invariant, alors $\delta_X(B,\mathcal{A}) = \delta_X(S(t)B,\mathcal{A}) \to_{t \to +\infty} 0$ et donc $B \subset \overline{\mathcal{A}} = \mathcal{A}$. b) Si B est fermé et attractif, alors $\delta_X(\mathcal{A},B) = \delta_X(S(t)\mathcal{A},B) \to_{t \to +\infty} 0$ et donc $\mathcal{A} \subset \overline{B} = B$. L'assertion c) découle immédiatement de a) et b).

Lemme (Lemme 2)

Si S(t), $t \ge 0$, est un système dynamique continu sur un espace métrique connexe X et si A est un ensemble compact, invariant, qui attire tout compact de X, alors A est connexe. En particulier, si S(t) admet un attracteur global compact A, A est connexe.

Remarque : Si X est un espace métrique, l'attracteur global compact \mathcal{A} d'un système dynamique discret S n'est pas forcément connexe, comme le montre un contrexemple de Gobbino et Sardella (1997). Toutefois, si X est un espace de Banach et si \mathcal{A} est l'attracteur global compact d'un système dynamique discret ou continu, alors \mathcal{A} est connexe (Massat, 1983).

Remarque

Si le système dynamique S(t) admet un attracteur global \mathcal{A} , alors

$$\mathcal{A} \,=\, \{\mathit{u}(0)\,|\, \mathit{u} \in \mathit{C}^0_\mathit{b}(G,X) \ \textit{est une trajectoire complète bornée de } \mathit{S}(t)\}$$
 .

Définition (dissipation)

Soit S(t) un système dynamique.

1) On dit que S(t) est ponctuellement dissipatif (ou dissipatif point par point) s'il existe un ensemble borné B_0 tel que, pour tout $z \in X$, il existe un temps $\tau(z) \in G^+$ tel que

$$S(t)u_0 \in B_0$$
, $\forall t \geq \tau(z), t \in G^+$.

2) On dit que S(t) est dissipatif sur les bornés ou bien admet un borné absorbant s'il existe un ensemble borné B_0 tel que, pour tout borné $B \subset X$, il existe un temps $\tau(B) \in G^+$ tel que

$$S(t)B \subset B_0$$
, $\forall t \geq \tau(B)$, $t \in G^+$.